# What is Cross-Validation?

Cross-Validation is a model validation technique for assessing how the results of a statistical analysis will generalize to an independent data set. It is mainly used in settings where the goal is a prediction, and one wants to estimate how accurately a predictive model will perform in practice. The idea is to define a dataset to “test” the model in the training phase (i.e., the validation dataset), in order to limit problems like overfitting, give an insight on how the model will generalize to an independent dataset. One round of cross-validation involves a sample of data into complementary subsets, performing the analysis on one subset (called the training set), and validating the analysis on the other subset (called the validation set or testing set). To reduce variability, multiple rounds of cross-validation are performed using different partitions, and the validation results are averaged over the rounds. One of the main reasons for using cross-validation instead of using the conventional is that there is not enough data available to partition it into separate training and test sets without losing significant modeling or testing capability.

Was the above useful? Please share with others on social media.

If you want to look for more information, check some free online courses available at   coursera.orgedx.org or udemy.com.  Data Science from Scratch: First Principles with Python Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases