# What is Jackknife Resampling (Jacknifing)?

Jackknife Resampling (Jacknifing) in statistics is a resampling technique especially useful for variance and bias estimation. The jackknife predates other common resampling methods such as the bootstrap. The jackknife estimator of a parameter is found by systematically leaving out each observation from a dataset and calculating the estimate and then finding the average of these calculations. Given a sample of size N, the jackknife estimate is found by aggregating the estimates of each N-1 -sized sub-sample. The proposed name “jackknife” aimed to reflect that, like a physical jack-knife (a compact folding knife), this technique is a rough-and-ready tool that can improvise a solution for a variety of problems even though specific problems may be more efficiently solved with a purpose-designed tool. The jackknife is a linear approximation of the bootstrap. The jackknife estimate of a parameter can be found by estimating the parameter for each subsample omitting the ith observation to estimate the previously unknown value of a parameter. The jackknife technique can be used to estimate the bias of an estimator calculated over the entire sample.

Was the above useful? Please share with others on social media.

If you want to look for more information, check some free online courses available at   coursera.orgedx.org or udemy.com.