What is Latent Semantic Indexing (LSI)?

Latent Semantic Indexing (LSI) is a mathematical method used to determine the relationship between terms and concepts in content. The contents of a web page are crawled by a search engine and the most common words and phrases are collated and identified as the keywords for the page. LSI looks for synonyms related to the title of your page. For example, if the title of your page was “Classic Cars”, the search engine would expect to find words relating to that subject in the content of the page as well, i.e. “collectors”, “automobile”, “Ferrari”, “Lamborghini” and “car crash”. Latent Semantic Indexing came as a direct reaction to people trying to cheat search engines by cramming Meta keyword tags full of hundreds of keywords, Meta description full of more keywords, and page content full of nothing more than random keywords and no subject-related material or worthwhile content. LSI will not affect a squeeze page that has no intention of achieving a search engine rank anyway, due to its minimalistic content. But for site owners or bloggers hoping to get on the search engines good side, pay attention to LSI.

Was the above useful? Please share with others on social media.

If you want to look for more information, check some free online courses available at   coursera.orgedx.org or udemy.com.

Recommended reading list:


Data Science from Scratch: First Principles with Python

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.

If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.

Get a crash course in Python
Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
Collect, explore, clean, munge, and manipulate data
Dive into the fundamentals of machine learning
Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
Explore recommender systems, natural language processing, network analysis, MapReduce, and databases