Here is a comprehensive Ollama cheat sheet containing most often used commands and explanations:
Installation and Setup
- macOS: Download Ollama for macOS using the command:
curl -fsSL https://ollama.com/install.sh | sh
- Windows (Preview): Download Ollama for Windows.
- Linux: Use the command:
curl -fsSL https://ollama.com/install.sh | sh
- Docker: Use the official image available at
ollama/ollama
on Docker Hub.
Running Ollama
- Run Ollama: Start Ollama using the command:
ollama serve
- Run a Specific Model: Run a specific model using the command:
ollama run <model_name>
Model Library and Management
- List Models: List all available models using the command:
ollama list
- Pull a Model: Pull a model using the command:
ollama pull <model_name>
- Create a Model: Create a new model using the command:
ollama create <model_name> -f <model_file>
- Remove a Model: Remove a model using the command:
ollama rm <model_name>
- Copy a Model: Copy a model using the command:
ollama cp <source_model> <new_model>
Advanced Usage
- Multimodal Input: Use multimodal input by wrapping multiline text in triple quotes (
"""
) and specifying image paths directly in the prompt. - REST API Examples:
- Generate a Response: Use the command:
curl http://localhost:11434/api/generate -d '{"model": "<model_name>", "prompt": "<prompt>"}'
- Chat with a Model: Use the command:
bash curl http://localhost:11434/api/chat -d '{"model": "<model_name>", "messages": [{"role": "user", "content": "<message>"}]}'
Integration with Visual Studio Code
- Start Ollama: Start a terminal session and execute the command:
ollama serve
- Run a Model: Start a second terminal session and execute the command:
ollama run <model_name>
AI Developer Scripts
- ai_review: Scours through your codebase for specific files, provides suggestions and code examples, and saves them in a review-{current_date}.md file.
- ai_commit: Suggests a commit message based on staged changes.
- ai_readme: Creates a README file automatically based on your project.
- ai_pr: Provides a PR review message automatically.
Additional Resources
- GitHub Repository: Find the GitHub repository for AI developer scripts at https://github.com/ikramhasan/AI-Dev-Scripts.
Other Tools and Integrations
- Lobe Chat: An open-source, modern-design LLMs/AI chat framework supporting multiple AI providers and modalities.
- LangChain: A Java version of LangChain.
- AI Vtuber: A virtual YouTuber driven by various AI models, including Ollama, for real-time interaction with viewers.
- AI Code Completion: A locally or API-hosted AI code completion plugin for Visual Studio Code.
Community and Support
- Reddit: Join the Ollama community on Reddit for discussions and support.
Documentation and Updates
- Official Documentation: Refer to the official Ollama documentation for detailed guides and tutorials.
- GitHub Topics: Explore the Ollama topic on GitHub for updates and new projects.
Additional Tips
- GPU Support: Use the command:
podman run --rm --device nvidia.com/gpu=all --security-opt=label=disable ubuntu nvidia-smi -L
- NVIDIA GPU Support: Generate the CDI spec according to the documentation and check that your GPU is detected.
- Openshift: Use the commands:
oc new-project darmstadt-workshop
oc apply -f deployments/ollama.yaml
- Debugging: Use the command:
oc run mycurl --image=curlimages/curl -it -- sh
Additional References
- Ollama Cheat Sheet: Refer to the Ollama cheat sheet for detailed information on using Ollama.
- LLM AppDev Hands-On: Refer to the LLM AppDev Hands-On repository for additional information on developing applications with local LLMs.
Additional Tools and Resources
- Streamlit: Use Streamlit to run your Ollama application.
- Podman: Use Podman to run your Ollama application in a container.
- NVIDIA GPU Support: Use the command:
podman run --rm --device nvidia.com/gpu=all --security-opt=label=disable ubuntu nvidia-smi -L
- Openshift: Use the commands:
oc new-project darmstadt-workshop
oc apply -f deployments/ollama.yaml
- Debugging: Use the command:
oc run mycurl --image=curlimages/curl -it -- sh
Additional Tips and Tricks
- Customize a Model: Use the command:
ollama create <model_name> -f <model_file>
- Customize Prompt: Use the command:
ollama create <model_name> -f <model_file> -p <prompt>
- Chat with a Model: Use the command:
curl http://localhost:11434/api/chat -d '{"model": "<model_name>", "messages": [{"role": "user", "content": "<message>"}]}'
- Generate a Response: Use the command:
curl http://localhost:11434/api/generate -d '{"model": "<model_name>", "prompt": "<prompt>"}'
- Multimodal Input: Use multimodal input by wrapping multiline text in triple quotes (
"""
) and specifying image paths directly in the prompt. - REST API Examples:
- Generate a Response: Use the command:
curl http://localhost:11434/api/generate -d '{"model": "<model_name>", "prompt": "<prompt>"}'
- Chat with a Model: Use the command:
bash curl http://localhost:11434/api/chat -d '{"model": "<model_name>", "messages": [{"role": "user", "content": "<message>"}]}'
Additional Resources
- GitHub Repository: Find the GitHub repository for AI developer scripts at https://github.com/ikramhasan/AI-Dev-Scripts.
- Reddit: Join the Ollama community on Reddit for discussions and support.
- Official Documentation: Refer to the official Ollama documentation for detailed guides and tutorials.
- GitHub Topics: Explore the Ollama topic on GitHub for updates and new projects.
Additional Tips and Tricks
- GPU Support: Use the command:
podman run --rm --device nvidia.com/gpu=all --security-opt=label=disable ubuntu nvidia-smi -L
- NVIDIA GPU Support: Generate the CDI spec according to the documentation and check that your GPU is detected.
- Openshift: Use the commands:
oc new-project darmstadt-workshop
oc apply -f deployments/ollama.yaml
- Debugging: Use the command:
oc run mycurl --image=curlimages/curl -it -- sh
Additional References
- Ollama Cheat Sheet: Refer to the Ollama cheat sheet for detailed information on using Ollama.
- LLM AppDev Hands-On: Refer to the LLM AppDev Hands-On repository for additional information on developing applications with local LLMs.
Additional Tools and Resources
- Streamlit: Use Streamlit to run your Ollama application.
- Podman: Use Podman to run your Ollama application in a container.
- NVIDIA GPU Support: Use the command:
podman run --rm --device nvidia.com/gpu=all --security-opt=label=disable ubuntu nvidia-smi -L
- Openshift: Use the commands:
oc new-project darmstadt-workshop
oc apply -f deployments/ollama.yaml
- Debugging: Use the command:
oc run mycurl --image=curlimages/curl -it -- sh
Additional Tips and Tricks
- Customize a Model: Use the command:
ollama create <model_name> -f <model_file>
- Customize Prompt: Use the command:
ollama create <model_name> -f <model_file> -p <prompt>
- Chat with a Model: Use the command:
curl http://localhost:11434/api/chat -d '{"model": "<model_name>", "messages": [{"role": "user", "content": "<message>"}]}'
- Generate a Response: Use the command:
curl http://localhost:11434/api/generate -d '{"model": "<model_name>", "prompt": "<prompt>"}'
- Multimodal Input: Use multimodal input by wrapping multiline text in triple quotes (
"""
) and specifying image paths directly in the prompt. - REST API Examples:
- Generate a Response: Use the command:
curl http://localhost:11434/api/generate -d '{"model": "<model_name>", "prompt": "<prompt>"}'
- Chat with a Model: Use the command:
bash curl http://localhost:11434/api/chat -d '{"model": "<model_name>", "messages": [{"role": "user", "content": "<message>"}]}'
Additional Resources
- GitHub Repository: Find the GitHub repository for AI developer scripts at https://github.com/ikramhasan/AI-Dev-Scripts.
- Reddit: Join the Ollama community on Reddit for discussions and support.
- Official Documentation: Refer to the official Ollama documentation for detailed guides and tutorials.
- GitHub Topics: Explore the Ollama topic on GitHub for updates and new projects.
Additional Tips and Tricks
- GPU Support: Use the command:
podman run --rm --device nvidia.com/gpu=all --security-opt=label=disable ubuntu nvidia-smi -L
- NVIDIA GPU Support: Generate the CDI spec according to the documentation and check that your GPU is detected.
- Openshift: Use the commands:
oc new-project darmstadt-workshop
oc apply -f deployments/ollama.yaml
- Debugging: Use the command:
oc run mycurl --image=curlimages/curl -it -- sh
Additional References
- Ollama Cheat Sheet: Refer to the Ollama cheat sheet for detailed information on using Ollama.
- LLM AppDev Hands-On: Refer to the LLM AppDev Hands-On repository for additional information on developing applications with local LLMs.
Additional Tools and Resources
- Streamlit: Use Streamlit to run your Ollama application.
- Podman: Use Podman to run your Ollama application in a container.
- NVIDIA GPU Support: Use the command:
podman run --rm --device nvidia.com/gpu=all --security-opt=label=disable ubuntu nvidia-smi -L
- Openshift: Use the commands:
oc new-project darmstadt-workshop
oc apply -f deployments/ollama.yaml
- Debugging: Use the command:
oc run mycurl --image=curlimages/curl -it -- sh
Additional Tips and Tricks
- Customize a Model: Use the command:
ollama create <model_name> -f <model_file>
- Customize Prompt: Use the command:
ollama create <model_name> -f <model_file> -p <prompt>
- Chat with a Model: Use the command:
curl http://localhost:11434/api/chat -d '{"model": "<model_name>", "messages": [{"role": "user", "content": "<message>"}]}'
- Generate a Response: Use the command:
curl http://localhost:11434/api/generate -d '{"model": "<model_name>", "prompt": "<prompt>"}'
- Multimodal Input: Use multimodal input by wrapping multiline text in triple quotes (
"""
) and specifying image paths directly in the prompt. - REST API Examples:
- Generate a Response: Use the command:
curl http://localhost:11434/api/generate -d '{"model": "<model_name>", "prompt": "<prompt>"}'
- Chat with a Model: Use the command:
bash curl http://localhost:11434/api/chat -d '{"model": "<model_name>", "messages": [{"role": "user", "content": "<message>"}]}'
Additional Resources
- GitHub Repository: Find the GitHub repository for AI developer scripts at https://github.com/ikramhasan/AI-Dev-Scripts.
- Reddit: Join the Ollama community on Reddit for discussions and support.
- Official Documentation: Refer to the official Ollama documentation for detailed guides and tutorials.
- GitHub Topics: Explore the Ollama topic on GitHub for updates and new projects.
Additional Tips and Tricks
- GPU Support: Use the command:
podman run --rm --device nvidia.com/gpu=all --security-opt=label=disable ubuntu nvidia-smi -L
- NVIDIA GPU Support: Generate the CDI spec according to the documentation and check that your GPU is detected.
- Openshift: Use the commands:
oc new-project darmstadt-workshop
oc apply -f deployments/ollama.yaml
- Debugging: Use the command:
oc run mycurl --image=curlimages/curl -it -- sh
Additional References
- Ollama Cheat Sheet: Refer to the Ollama cheat sheet for detailed information on using Ollama.
- LLM AppDev Hands-On: Refer to the LLM AppDev Hands-On repository for additional information on developing applications with local LLMs.
Additional Tools and Resources
- Streamlit: Use Streamlit to run your Ollama application.
- Podman: Use Podman to run your Ollama application in a container.
- NVIDIA GPU Support: Use the command:
podman run --rm --device nvidia.com/gpu=all --security-opt=label=disable ubuntu nvidia-smi -L
- Openshift: Use the commands:
oc new-project darmstadt-workshop
oc apply -f deployments/ollama.yaml
- Debugging: Use the command:
oc run mycurl --image=curlimages/curl -it -- sh
Additional Tips and Tricks
- Customize a Model: Use the command:
ollama create <model_name> -f <model_file>
- Customize Prompt: Use the command:
ollama create <model_name> -f <model_file> -p <prompt>
- Chat with a Model: Use the command:
curl http://localhost:11434/api/chat -d '{"model": "<model_name>", "messages": [{"role": "user", "content": "<message>"}]}'
- Generate a Response: Use the command:
curl http://localhost:11434/api/generate -d '{"model": "<model_name>", "prompt": "<prompt>"}'
- Multimodal Input: Use multimodal input by wrapping multiline text in triple quotes (
"""
) and specifying image paths directly in the prompt. - REST API Examples:
- Generate a Response: Use the command:
curl http://localhost:11434/api/generate -d '{"model": "<model_name>", "prompt": "<prompt>"}'
- Chat with a Model: Use the command:
bash curl http://localhost:11434/api/chat -d '{"model": "<model_name>", "messages": [{"role": "user", "content": "<message>"}]}'
Additional Resources
- GitHub Repository: Find the GitHub repository for AI developer scripts at https://github.com/ikramhasan/AI-Dev-Scripts.
- Reddit: Join the Ollama community on Reddit for discussions and support.
- Official Documentation: Refer to the official Ollama documentation for detailed guides and tutorials.
- GitHub Topics: Explore the Ollama topic on GitHub for updates and new projects.
Additional Tips and Tricks
- GPU Support: Use the command:
podman run --rm --device nvidia.com/gpu=all --security-opt=label=disable ubuntu nvidia-smi -L
- NVIDIA GPU Support: Generate the CDI spec according to the documentation and check that your GPU is detected.
- Openshift: Use the commands:
oc new-project darmstadt-workshop
oc apply -f deployments/ollama.yaml
–