Popular Pandas snippets used in data analysis.

Popular Pandas snippets used in data analysis.

Pandas is very popular Python library for data analysis, manipulation, and visualization, I would like to share my personal view on the list of most often used functions/snippets for data analysis.

1.Import Pandas to Python

import pandas as pd

2. Import data from CSV/Excel file

df=pd.read_csv('C:/Folder/mlhype.csv')   #imports whole csv to pd dataframe
df = pd.read_csv('C:/Folder/mlhype.csv', usecols=['abv', 'ibu'])  #imports selected columns
df = pd.read_excel('C:/Folder/mlhype.xlsx')  #imports excel file

3. Save data to CSV/Excel

df.to_csv('C:/Folder/mlhype.csv') #saves data frame to csv
df.to_excel('C:/Folder/mlhype.xlsx') #saves data frame to excel

4. Exploring data

df.head(5) #returns top 5 rows of data
df.tail(5) #returns bottom 5 rows of data
df.sample(5) #returns random 5 rows of data
df.shape #returns number of rows and columns
df.info() #returns index,data types, memory information
df.describe() #returns basic statistical summary of columns

5. Basic statistical functions

df.mean() #returns mean of columns
df.corr() #returns correlation table
df.count() #returns count of non-null's in column
df.max() #returns max value in each column
df.min() #returns min value in each column
df.median() #returns median of each colun
df.std() #returns standard deviation of each column

6. Selecting subsets

df['ColumnName'] #returns column 'ColumnName'
df[['ColumnName1','ColumnName2']] #returns multiple columns from the list
df.iloc[2,:] #selection by position - whole second row
df.iloc[:,2] #selection by position - whole second column
df.loc[:10,'ColumnName'] #returns first 11 rows of column
df.ix[2,'ColumnName'] #returns second element of column

7. Data cleansing

df.columns = ['a','b','c','d','e','f','g','h'] #rename column names
df.dropna() #drops all rows that contain missing values
df.fillna(0) #replaces missing values with 0 (or any other passed value)
df.fillna(df.mean()) #replaces missing values with mean(or any other passed function)


df[df['ColumnName'] > 0.08] #returns rows with meeting criterion 
df[(df['ColumnName1']>2004) & (df['ColumnName2']==9)] #returns rows meeting multiple criteria
df.sort_values('ColumnName') #sorts by column in ascending order
df.sort_values('ColumnName',ascending=False) #sort by column in descending order

9. Data frames concatenation

pd.concat([DateFrame1, DataFrame2],axis=0) #concatenate rows vertically
pd.concat([DateFrame1, DataFrame2],axis=1) #concatenate rows horizontally

10.Adding new columns

df['NewColumn'] = 50 #creates new column with value 50 in each row
df['NewColumn3'] = df['NewColumn1']+df['NewColumn2'] #new column with value equal to sum of other columns
del df['NewColumn'] #deletes column

Was the above useful? Please share with others on social media.

If you want to look for more information, check some free online courses available at   coursera.orgedx.org or udemy.com.

Recommended reading list:


Data Science from Scratch: First Principles with Python

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.

If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.

Get a crash course in Python
Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
Collect, explore, clean, munge, and manipulate data
Dive into the fundamentals of machine learning
Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
Explore recommender systems, natural language processing, network analysis, MapReduce, and databases