Apache Kafka is an open-source stream processing platform developed by the Apache Software Foundation written in Scala and Java. The project aims to provide a unified, high-throughput, low-latency platform for handling real-time data feeds. Its storage layer is essentially a “massively scalable pub/sub message queue architected as a distributed transaction log, making it highly valuable for enterprise infrastructures to process streaming data. Additionally, Kafka connects to external systems (for data import/export) via Kafka Connect and provides Kafka Streams, a Java stream processing library. The design is heavily influenced by transaction logs. Apache Kafka was originally developed by LinkedIn and was subsequently open sourced in early 2011. Graduation from the Apache Incubator occurred on 23 October 2012. Due to its widespread integration into enterprise-level infrastructures, monitoring Kafka performance at scale has become an increasingly important issue. Monitoring end-to-end performance requires tracking metrics from brokers, consumer, and producers, in addition to monitoring ZooKeeper, which is used by Kafka for coordination among consumers. There are currently several monitoring platforms to track Kafka performance, both open-source, like LinkedIn’s Burrow, as well as paid, like Datadog. In addition to these platforms, collecting Kafka data can also be performed using tools commonly bundled with Java, including JConsole.
Was the above useful? Please share with others on social media.
If you want to look for more information, check some free online courses available at coursera.org, edx.org or udemy.com.
Recommended reading list:
Hadoop: The Definitive Guide: Storage and Analysis at Internet Scale Get ready to unlock the power of your data. With the fourth edition of this comprehensive guide, you’ll learn how to build and maintain reliable, scalable, distributed systems with Apache Hadoop. This book is ideal for programmers looking to analyze datasets of any size, and for administrators who want to set up and run Hadoop clusters. Using Hadoop 2 exclusively, author Tom White presents new chapters on YARN and several Hadoop-related projects such as Parquet, Flume, Crunch, and Spark. You’ll learn about recent changes to Hadoop, and explore new case studies on Hadoop’s role in healthcare systems and genomics data processing. Learn fundamental components such as MapReduce, HDFS, and YARN Explore MapReduce in depth, including steps for developing applications with it Set up and maintain a Hadoop cluster running HDFS and MapReduce on YARN Learn two data formats: Avro for data serialization and Parquet for nested data Use data ingestion tools such as Flume (for streaming data) and Sqoop (for bulk data transfer) Understand how high-level data processing tools like Pig, Hive, Crunch, and Spark work with Hadoop Learn the HBase distributed database and the ZooKeeper distributed configuration service |