What is Feature in machine learning?

Feature in machine learning and pattern recognition is an individual measurable property of a phenomenon being observed. Choosing informative, discriminating and independent features is a crucial step for effective algorithms in pattern recognition, classification, and regression. Features are usually numeric, but structural features such as strings and graphs are used in syntactic pattern recognition. The concept of “feature” is related to that of an explanatory variable used in statistical techniques such as linear regression. The initial set of raw features can be redundant and too large to be managed. Therefore, a preliminary step in many applications of machine learning and pattern recognition consists of selecting a subset of features or constructing a new and reduced set of features to facilitate learning, and to improve generalization and interpretability. Extracting or selecting features is a combination of art and science; developing systems to do so is known as feature engineering. It requires the experimentation of multiple possibilities and the combination of automated techniques with the intuition and knowledge of the domain expert. Automating this process is feature learning, where a machine not only uses features for learning but learns the features itself.

Was the above useful? Please share with others on social media.

If you want to look for more information, check some free online courses available at   coursera.orgedx.org or udemy.com.

Recommended reading list:


Data Science from Scratch: First Principles with Python

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.

If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.

Get a crash course in Python
Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
Collect, explore, clean, munge, and manipulate data
Dive into the fundamentals of machine learning
Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
Explore recommender systems, natural language processing, network analysis, MapReduce, and databases