What is Random Forest?

Random Forest or Random Decision Forest are an ensemble learning method for classification, regression, and other tasks, that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees. Random decision forests correct for decision trees habit of overfitting to their training set. The first algorithm for random decision forests was created by Tin Kam Ho using the random subspace method, which, in Ho’s formulation, is a way to implement the “stochastic discrimination” approach to the classification proposed by Eugene Kleinberg. An extension of the algorithm was developed by Leo Breiman and Adele Cutler and “Random Forests” is their trademark. The extension combines Breiman’s “bagging” idea and random selection of features introduced first by Ho and later independently by Amit and Geman in order to construct a collection of decision trees with controlled variance. Decision trees are a popular method for various machine learning tasks. Tree learning comes closest to meeting the requirements for serving as an off-the-shelf procedure for data mining because it is invariant under scaling and various other transformations of feature values, is robust to the inclusion of irrelevant features and produces inspectable models.

Was the above useful? Please share with others on social media.

If you want to look for more information, check some free online courses available at   coursera.orgedx.org or udemy.com.

Recommended reading list:

 

Data Science from Scratch: First Principles with Python

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.

If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.

Get a crash course in Python
Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
Collect, explore, clean, munge, and manipulate data
Dive into the fundamentals of machine learning
Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
Explore recommender systems, natural language processing, network analysis, MapReduce, and databases