# What is Statistical Power?

Statistical Power of any test of statistical significance is defined as the probability that it will reject a false null hypothesis. Statistical power is inversely related to beta or the probability of making a Type II error. The power is a function of the possible distributions, often determined by a parameter, under the alternative hypothesis. As the power increases, there are decreasing chances of a Type II error, which are also referred to as the false negative rate (β) since the power is equal to 1−β, again, under the alternative hypothesis. A similar concept is Type I error or the level of a test under the null hypothesis. Power analysis can be used to calculate the minimum sample size required so that one can be reasonably likely to detect an effect of a given size. For example: “how many times do I need to toss a coin to conclude it is rigged?” Power analysis can also be used to calculate the minimum effect size that is likely to be detected in a study using a given sample size. In addition, the concept of power is used to make comparisons between different statistical testing procedures: for example, between a parametric and a nonparametric test of the same hypothesis.

Was the above useful? Please share with others on social media.

If you want to look for more information, check some free online courses available at   coursera.orgedx.org or udemy.com.